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ABSTRACT

Infrared thermography (IRT) for real-time stress detection in plant factories (PFs) remains largely unexplored. Hence, this study
investigates the feasibility of implementing IRT in PFs, using machine learning (ML) to address the challenges in information
processing. Herein, purple basil plantlets were subjected to root dehydration within a pilot-scale PF, and canopy temperature
was monitored at regular intervals using a thermal camera. Subsequently, eight ML models using the ‘support vector machines’
algorithm were tested for stress detection. Our findings revealed that differences in canopy temperature due to microenvi-
ronmental variations led to inaccurate representation of stress. Nonetheless, binary classification models trained using plants at
medial and high stress overcame this issue by identifying stressed samples with 81%-94% accuracy. However, although models
trained with medially stressed samples performed well for all stress levels, models trained using highly stressed samples failed to
identify medial stress reliably. Additionally, ternary and quaternary classification models were able to identify unstressed
samples but could not distinguish between different levels of stress. Hence, binary classification models trained using medially
stressed samples overcame spatiotemporal variations in canopy thermal profile most effectively and provided probabilistic
estimates of plant stress within the PF most consistently.

1 | Introduction before plant water status is affected markedly, making it a useful
trait for early stress detection.

Plant water status is a crucial factor influencing crop growth

and yield as it plays an important role in physiological signalling
as well as the biosynthesis and transport of nutrients, carbo-
hydrates, and various other metabolites [1-3]. Additionally,
plant water status also acts as an indicator of stress by influ-
encing temperature regulation via stomatal opening [4-6]. Any
biotic or abiotic stress that disrupts water uptake results in the
closure of stomata due to loss of turgor pressure, which in turn
impedes transpirational cooling of leaves, increasing canopy
temperature [7]. This increment in canopy temperature occurs

Considering the sensitivity of plant temperature to physiological
perturbations, infrared thermography (IRT) has gained popu-
larity in recent years for real-time monitoring of plant stress [7-
9]. Since IRT accurately senses fluctuations in canopy temper-
ature, its pertinence in high-throughput real-time crop stress
monitoring has been assessed with special emphasis on water
stress and crop performance [10-12]. Further, the scope of using
IRT has been well-explored for crop production systems such as
fields, greenhouses, and growth chambers [5, 8, 13-17].
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Summary

o Crop stress detection in plant factories via thermal im-
aging may be challenging because perceptible plant
temperature is  strongly influenced by its
microenvironment.

e Thermal image analysis via supervised machine
learning allows the development of robust prediction
models for identifying stressed plants by overcoming
these limitations.

e Binary classification models can be used for reliably
identifying stressed plants and estimating the level of
plant stress in plant factories.

However, the potential of utilising this technology remains
largely unexplored for plant factories (PFs), that is, modern
indoor vertical farms which utilise tiered or stacked hydroponic
plant growth units along with LED lighting and artificial air
circulation for high density crop cultivation.

Despite better regulation of the growth environment within PFs
[18], plants are still vulnerable to stress due to biotic or abiotic
stressors [19]. Furthermore, high-density planting increases the
likelihood of rapid widespread crop loss if the stress is not
mitigated timely. Since plant growth in PFs is extensively
automated, with minimal human intervention, introduction of
fast high-throughput plant monitoring systems that comple-
ment any alerts coming from hardware failures is necessary for
ensuring quality production. Thus, IRT may be deemed as an
ideal tool for real-time crop monitoring in PFs owing to its rapid
response, sensitivity, ease of use, and high throughput.

Due to the high dimensionality of thermal images, analysing
IRT data may prove to be challenging via conventional mathe-
matical tools. However, the process may be streamlined by
implementing machine learning (ML). In recent years, ML has
emerged as a useful tool for high-throughput analysis of image-
based datasets as it enables rapid in-depth processing of nu-
merical and spatial data patterns [20-23]. Amongst the various
ML approaches, supervised learning via support vector ma-
chines (SVMs) has been frequently employed for detecting plant
stress using multispectral, thermal, and hyperspectral imaging
[24-27] as it creates hypothetical boundaries in high-
dimensional space for optimal separation between different
dataset classes [28]. Hence, integrating SVM-based ML classifi-
cation with IRT could significantly improve real-time crop
monitoring within PFs.

In the present study, we explored the feasibility of IRT for real-
time stress detection in PFs using purple basil (Ocimum basili-
cum L. var. purpurascens) as a model system. Since imple-
mentation of IRT for plant stress detection in PFs has not been
investigated extensively till date, we carried out an exploratory
study to reveal potential bottlenecks in this process. For this, we
imposed stress on the plants by withholding irrigation to elicit
changes in canopy temperature, and monitored the plants at
regular intervals via thermal imaging to obtain spatiotemporal
trends. The information was used to develop a framework by
combining IRT with ML for real-time plant stress detection.

2 | Methods
2.1 | Plant Material

Purple basil seedlings were raised in coco-peat plugs (Van der
Knapp, The Netherlands) in a nursery chamber (Aralab-InFarm
UK Ltd., London, UK); each plug received 10 seeds for germi-
nation. At ~2 cm, the seedlings were transferred to a small-scale
PF (InStore Farm, InFarm UK Ltd.; Figure 1A) located at the
Agriculture Building, Newcastle University, UK. Briefly, the PF
consisted of an enclosed growth chamber with eight hydroponic
trays (80 x 80 cm?), each having an 8 x 8 array of empty slots
(Figure 1B). Each tray received 58 seedling plugs, and the six
remaining slots were used for temperature references, irrigation,
and handling (Figure 1B). Broad-spectrum LED arrays having
an approximate red (400-499 nm):green (500-599 nm):blue
(600-699 nm) distribution of 40:20:40 were used to maintain the
light intensity at 280 umol/m?sec PPFD, following a 16/8 h day-
night cycle (Figure 2). A commercial hydroponic fertiliser mix
was used as the nutrient source, and irrigation was performed
following the nutrient film technique using an electrical pump.
Temperature and relative humidity (RH) were maintained at
25 + 1°C and 60 + 5%, respectively, through a centralised air
circulation vent connected to a custom-made heating, ventila-
tion, and air-conditioning (HVAC) system that delivered air at
0.3 m/s at the canopy level [29]. Growth conditions and irriga-
tion were regulated automatically through a Farmboard
(InFarm UK Ltd.) via built-in sensors for temperature and RH
as well as nutrient solution flow rate, electrical conductivity,
and pH. Additionally, commercial handheld temperature and
RH sensors (EasyLog EL-USB-2-LCD, Lascar Electronics, UK)
were used to monitor the growth environment close to each tray
to ensure uniform conditions throughout the setup.

2.2 | Experimental Design

Plants were subjected to water stress after 2 weeks of growth.
Two preliminary trials (PTs) were carried out to get a general
overview of stress responses induced by water deficit, followed
by a third (main) trial aimed at ML-based stress detection
(Figure 2). In the first trial (PT-1), irrigation was stopped at 8 a.
m., and thermal imaging (described later) was carried out with
five separate trays for 0, 6, 12, 22, and 34 h without irrigation.
Twelve samples were randomly selected from the corresponding
tray immediately after imaging. The aerial part comprising of at
least four to five healthy seedlings with fully expanded leaves
was considered as the shoot, whereas the remaining portion
comprising the coco-peat plug embedded with the root hairs
was considered as the ‘root-plug’ (Supporting Information
Figure S1A). Fresh weight (FW) of the shoots and root-plugs
was measured immediately, followed by oven drying at 85°C
for 48 h to measure the dry weight (DW). Subsequently, each
root-plug was soaked in tap water for an hour, and the weight of
water-saturated plugs was also recorded. Shoot water content
and relative water content of root-plugs were calculated as
follows:

(Shoot FW — Shoot DW)
Shoot FW

Shoot water content (%) = 100 X

@
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FIGURE 1

| Schematic overview of the experimental plant factory (A), layout of the planting tray (B), and the setup for imaging (C). HVAC,

customised heating, ventilation, and air-conditioning unit connected to the air circulation vent. LED spectrum: red (400-499 nm):green (500-
599 nm):blue (600-699 nm) distribution of 40:20:40; light intensity: 280 wmol/m?sec PPFD; day/night cycle: 16/8 h; air temperature: 25 + 1°C;

relative humidity: 60 + 5%; rate of air flow: 0.3 m/s.
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FIGURE 2 |

Overview of the experimental design indicating the lighting and irrigation schedules along with intervals for thermal imaging. *After

imaging, 12 random samples were taken for fresh and dry biomass measurements. **After imaging, five random samples were used for measuring

stomatal conductance and biomass. "Lighting schedule was the same for all trials.

Root plug (RP) relative water content (%) = 100

(RPFW - RP DW)

X 2
(FW of saturated RP - RP DW) @

The next trial (PT-2) was performed to track the onset of stress
by comparing plant temperature with stomatal conductance
and root-plug water content at earlier stages of water

deprivation. As before, irrigation was stopped at 8 a.m., and
thermal imaging was performed using four trays at eight
hourly intervals from 5 to 12 h without irrigation, wherein
each tray was used for two random intervals (Figure 2).
Immediately after imaging, five plants were selected from the
respective tray for recording stomatal conductance using an
AP4 Porometer (Delta-T Devices, Cambridge, UK; range:
0.025-3 cm/s; accuracy: > 90% for 0.025-3 cm/s), along with
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the relative water content of root-plugs being calculated as
before.

Findings of PT-1 and PT-2 were used to design the main trial. In
this trial, thermal imaging of unirrigated plants was performed
for two horizontally adjacent trays at hourly intervals from 6 to
12 h without irrigation (Figure 2). This data was used for
assessing spatiotemporal variations in perceived plant temper-
ature, followed by ML for stress detection. All trials were per-
formed with at least one tray as a control to monitor the
temperature in continuously irrigated plants. A gap of 2 hours
was maintained between turning the lights ON (6 a.m.) and
stopping of irrigation (8 a.m.) for allowing the plants to ‘wake
up’ completely, that is, get acclimated to the light.

2.3 | Thermal Imaging

Thermal imaging was performed using a T1030sc thermal
camera (Teledyne FLIR LLC, USA; temperature range: —40°C-
150°C; accuracy: £ 1% for 5°C-150°C), having 7.5-14 pm
spectral range and focal plane array uncooled microbolometer
with HD detector (resolution: 1024 x 768 pixels). The camera
acquired thermal and RGB images simultaneously. Plant can-
opies were imaged outside the growth chamber using a cus-
tomised setup for maintaining a fixed vertical distance (~2 m)

between the camera and the tray surface (Figure 1C), adjacent
to the growth chamber to ensure similar environmental condi-
tions. Imaging was performed under a neutral-white LED light
source at a room temperature of 25 £+ 1°C. Camera parameters
such as reflected, atmospheric, and optics temperatures were
fixed, and customised black body temperature reference pads
were placed on each tray for the entire duration of the experi-
ment [30]. Each tray was imaged within 30 s of being taken out
of the growth chamber and returned immediately.

2.4 | Thermal Image Pre-Processing and
Temperature Extraction

Pre-processing of thermal images was performed using Python
programming (www.python.org) implementing the flirextractor
library (https://pypi.org/project/flirextractor). The pipeline for
this involved the following steps (Figure 3): (1) parallax
correction between the thermal and RGB images for back-
ground (tray) removal using RGB colour thresholding; (2)
temperature mapping (15°C-30°C scale) to grayscale (0-1
scale); (3) isolation of individual plants using an 8 x 8 grid to get
64 regions of interest (size: 95 x 95 pixels); (4) removal of un-
usable images; and (5) temperature extraction, followed by
normalisation as an environmental correction for absolute er-
rors. Average plant temperature was computed after excluding a

Thermal data to
grayscale image
(15-30°C > 0-1)

—

Splitting of tray
region into 64
square units

€V
Raw thermal Background
et :> removal via colour
thresholding
(

Temperature Removal of
extraction and <:| outliers and non-
normalization plant elements

(B)

Background
removal via colour
thresholding using

RGB image

Exclusion of
boundary pixels for
obtaining plant
temperature

FIGURE 3 |

Overview of the image pre-processing pipeline (A) and a flowchart depicting parallax correction, background removal, and selection

of region of interest for extracting plant temperature (B). RGB, colour image having Red, Green, and Blue channels; Th, thermal image; RGB + Th,

overlaid RGB and thermal images for representing parallax error and its correction.
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https://pypi.org/project/flirextractor

region of 10 pixels on all four sides of each plant to minimise the
effect of overlapping leaves from adjacent samples (Figure 3B).
Only the leaves visible at the canopy level were considered
while estimating sample temperature; no other parts of the plant
(stem, roots) were considered in this process.

The difference between observed plant temperature and refer-
ence temperature (T,e), that is, the mean temperature of the
black body reference pads, was used along with a constant
(25°C) to obtain normalised sample temperature as follows:

Normalised temperature (°C) = Observed temperature 3)
+ (25 = Trer)

Positional effects on perceived plant temperature within
different regions of each tray were visualised by combining the
data for both trays to get the average sample temperature at
different positions within the trays (Supporting Information
Figure S2).

2.5 | ML for Predicting Plant Stress

Thermal images from the main trial were used to design a
Python-based ML pipeline implementing SVMs for identifying
stressed plants (Supporting Information Figure S3). For this, we
used the svm function of the Scikit-learn library [31]. Prior to
training the models, eight-fold data augmentation was per-
formed by rotating and inverting each image (Supporting In-
formation Figure S4). Considering the radial canopy distribution
of each sample, this data augmentation process helped over-
come any potential biases arising from the spatial distribution of
image pixels that were not perceptible visually, and created
larger and more diverse training datasets, which is beneficial for
reducing overfitting of ML models [32]. Other types of data
augmentation steps, such as blurring and zooming in/out, were
not used for the sake of simplicity keeping in mind the practical
possibilities of such monitoring systems during commercial use.

Subsequently, each thermal image was flattened to a vector
containing the values for each pixel within the image. A ran-
domized stratified train-test split of 80:20 was implemented. All
models were allowed to choose from three kernels, viz., linear,
polynomial, and radial basis function (rbf), along with a broad
range of hyperparameters C (0.01-10) and y (0.001-1) with the

TABLE 1 | Summary of machine learning dataset from the main trial.

target of maximising accuracy (Supporting Information
Table S1). Here, C is the cost parameter defining the penalty
weight of deviations, and y is an rbf-specific parameter con-
trolling the trade-off between bias errors and variance in the
adjusted model. The same hyperparameter sets were used for
five-fold cross-validation to check model performance for vari-
ations in training datasets.

In order to simplify the depiction of ML analyses, samples from
each imaging interval have been represented using incremental
stress levels (SL) as SLO, SL1, SL2, SL3, SL4, SL5, and SL6 for 6,
7,8,9, 10, 11, and 12 h without irrigation, respectively. Based on
the results of PT-1 and PT-2, samples from 6 h without irriga-
tion, that is, the SLO class, were considered as ‘unstressed’. Six
ML models were generated for binary classification (BC), along
with one model each for ternary and quaternary classification
(TC, QC). Each BC (two-class) model was trained using SLO
images along with images from one of the six other classes
(SL1-SL6) as the stressed sample set, and the models were
labelled as BC-1 to BC-6, respectively. Similarly, the TC (three-
class) and QC (four-class) models were generated using images
from SLO, SL3, and SL6 (representing no, medium, and high
stress, respectively) and images from SLO, SL2, SL4, and SL6
(representing no, mild, moderate, and high stress, respectively).
The number of images used from each class for training and
testing has been summarised in Table 1.

Model performance was assessed using the test dataset (20%) to
calculate accuracy, Precision, Recall (sensitivity), F1 score, and
Specificity (Table 2) using the confusion matrix. Here, each of
the five performance parameters represents a unique aspect of
model ‘confusion’, that is, the ability or inability to distinguish
different classes robustly. In particular, ‘accuracy’ provides a
general overview of model performance, whereas the other four
parameters provide class-specific insights into model behaviour.
The predictive ability of all ML models was further tested by
individually deploying each model to analyse all samples from
SLO-SL6 (Supporting Information Table S2), followed by plot-
ting sample temperature against its Platt's probabilistic estimate
of stress provided by the respective ML model.

2.6 | Statistical Analysis

Data pertaining to shoot and root-plug water content as well as
plant temperature were subjected to one-way ANOVA followed

No. of images

Class Imaging interval (h) Original Augmented Training (80%) Test (20%)
SLO 6 113 904 723 181
SL1 7 111 888 710 178
SL2 8 112 896 717 179
SL3 9 112 896 717 179
SL4 10 112 896 717 179
SL5 11 107 856 685 171
SL6 12 109 872 697 175

Abbreviation: SL, stress level.
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TABLE 2 | Model performance parameters calculated from the confusion matrix.

Parameter Formula Remarks

Accuracy 100 x total no. of TP for all groups + total no. of Indicates the overall performance of the model considering all

(%) samples classes

Precision TP + (TP + FP) Share of correct classifications within each predicted class

Recall TP + (TP + FN) Proportion of correctly classified samples from each original

class

F1 score 2 X Precision x Recall +~ (Precision + Recall) Parameter indicating classification ability of the model for
each class

Specificity TN + (TN + FP) Goodness of model at identifying negative outcomes for each

class

Abbreviations: FN, False negative; FP, False positive; TN, True negative; TP, True positive.

by Tukey's post hoc test (p < 0.05) in Python using the scipy.stats
library (https://docs.scipy.org/doc/scipy/reference/stats.html) to
ascertain the significance of differences.

3 | Results
3.1 | Plant Stress Response

Data from the first preliminary trial (PT-1) revealed a gradual
decline in shoot and root-plug water content, along with a
steady increase in plant temperature from 0 to 34 h without
irrigation (Supporting Information Figure S5). Notably, while a
significant reduction in root-plug water content and an
increasing trend in plant temperature was observed from 6 to
12 h (Supporting Information Figure S5A,C), shoot water con-
tent did not change significantly (p < 0.05) over the same in-
terval (Supporting Information Figure S5B). PT-2 data for 5-
12 h without irrigation indicated that root-plug water content
decreased at a rate of ~15%/h between 5 and 7 h without irri-
gation (Figure 4A). However, it remained relatively stable be-
tween 7 and 10 h, followed by the continuation of water loss at a
slower pace of ~6%/h between 10 and 12 h (Figure 4A). Addi-
tionally, reduction in root-plug water content below ca. 30%-
35% and stomatal conductance below ca. 0.25-0.3 cm/s was
accompanied by a rapid increase in plant temperature
(Figure 4B,C).

In the main trial, a significant increase of ca. 2°C (p < 0.05) in
average plant temperature was noted from 6 to 12 h without
irrigation (Figure 4D). A positional effect was evident within the
tray area (Figure 5), wherein samples closer to the air circula-
tion vent consistently appeared cooler than those at the far edge,
despite having similar stress levels in terms of duration without
irrigation. Further, higher temperatures were only recorded
close to the centre of the tray during later stages.

3.2 | ML Model Performance

Classification reports (Tables 3 and 4) generated from the
confusion matrix of each model (Supporting Information
Tables S3 and S4) indicate an increase in accuracy and Precision
by ca. 1.7 times from BC-1 to BC-6. In contrast, Recall, F1 score,
and Specificity for SLO (unstressed class) increased by ca. 1.25-

1.5 times from BC-1 to BC-6, although the same parameters
showed an increment of ca. 2.3-2.9 times for the stressed clas-
ses. The accuracy of the TC model was only higher than BC-1
and BC-2, whereas the QC model had the lowest overall accu-
racy (Tables 3 and 4). Five-fold cross-validation using the best-
performing modelling parameters (Supporting Information
Table S5) yielded similar accuracy values as the respective
models (Supporting Information Table S6), indicating consis-
tency in model performance with variations in training and test
datasets.

Notably, BC-1 had similar Precision for both SLO (0.53) and SL1
(0.55), although the Recall was 0.74 and 0.32 for the two classes,
respectively (Table 3). This indicates that while more than half
of the samples were classified correctly by this model, most of
those samples were SLO. The FI score generalised this inference
by combining the outcomes of the previous two parameters. In
consensus, the low Specificity for SL1 (Table 3) revealed that the
BC-1 model was unable to reliably identify samples that did not
belong to SL1. Results for BC-2 were comparable, but slightly
better (Table 3). In contrast, BC-3 showed the earliest possibility
of reliable stress prediction by correctly identifying a majority of
the samples from the stressed (SL3) class (115/179; Supporting
Information Table S3), with the performance improving steadily
until BC-6. Interestingly, Precision, Recall, F1 score, and Speci-
ficity of the TC model were higher for the two extreme classes,
that is, SLO and SL6, as compared to the intermediate class, viz.,
SL3. A similar trend was observed for the QC model where the
magnitude of these four performance parameters was higher for
SLO and SL6 (extreme classes) as compared to SL2 and SL4
(intermediate classes).

3.3 | Probabilistic Prediction of Plant Stress Via
ML Models

Plants with higher temperatures had a greater probability of
being detected as ‘stressed’ using most ML models (Figures 6
and 7). Notably, BC-3 to BC-6 models were able to distinguish
between stressed and unstressed plants more robustly than BC-1
and BC-2. A gradual transition in the distribution of the
temperature-probability point cloud was observed across the
models, from being localised in the 0.4-0.65 probability region
for BC-1 (Figure 6A) to two discrete clusters in the 0 and 1 re-
gions for samples with temperatures < 22°C and > 23°C,
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FIGURE 4 |
root-plug water content (B; n = 39) and stomatal conductance (C; n = 39) recorded in the second preliminary trial (PT-2), as well as plant temperature
from 6 to 12 h with and without irrigation in the main trial (D; n = 116 for each interval). Values with error bars indicate mean + standard deviation
(A, D). Different lower-case letters (a—e) indicate significant differences in means as per Tukey's test (p < 0.05) between different intervals without

Root-plug water content at different intervals without irrigation (A; n = 5 for each interval) and the relation of plant temperature with

irrigation (A, D). Differences in mean plant temperature between the irrigated (Control) and unirrigated (Drought) plants at each interval have been
indicated as significant (*) or not significant (n.s.) following Tukey's test (p < 0.05; D). *One sample had to be omitted from PT-2 at 10 h due to
handling error.
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FIGURE 5 |
represents the average normalised temperature of two replicated trays from the main trial. Slots without plant samples indicate positions on the tray

Heatmaps depicting the spatial variation in temperature within the hydroponic trays from 6 to 12 h without irrigation. Each image

that were used for irrigation, temperature reference pads, or handling, as indicated in Figure 1B.

respectively, for the BC-6 model (Figure 6F). In concurrence
with the BC models, the relatively cooler samples had a higher
probability of being classified as SLO or ‘unstressed’ by the TC

and QC models as well (Figure 7A,D). However, probabilistic
predictions for higher levels of stress showed unclear trends for
both the TC and QC models (Figure 7B,C,E,F).
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TABLE 3 | Classification report on test data for binary classification (BC) models.
Class Precision Recall F1 score Specificity Support
Model ucC SC Accuracy (%) ucC SC ucC SC ucC SC ucC SC ucC SC
BC-1 SLO SL1 53.20 0.53 0.55 0.74 0.32 0.61 0.40 0.74 0.33 181 178
BC-2 SLO SL2 63.05 0.59 0.77 0.90 0.36 0.71 0.49 0.89 0.37 181 179
BC-3 SLO SL3 73.33 0.70 0.78 0.82 0.64 0.76 0.71 0.82 0.65 181 179
BC-4 SLO SL4 81.94 0.84 0.80 0.80 0.84 0.82 0.82 0.79 0.84 181 179
BC-5 SLO SL5 88.92 0.88 0.90 0.91 0.87 0.89 0.88 0.90 0.88 181 171
BC-6 SLO SL6 93.54 0.94 0.93 0.93 0.94 0.94 0.93 0.93 0.94 181 175
Abbreviations: SC, Stressed class; SL, stress level; Support, number of samples used from each class during model testing; UC, Unstressed class.
TABLE 4 | Classification report on test data for ternary and quaternary classification (TC, QC) models.
Model Class Precision Recall F1 score Specificity Support
TC SLO 0.68 0.85 0.75 0.92 181
SL3 0.54 0.32 0.40 0.66 179
SL6 0.72 0.83 0.77 0.92 175
Accuracy: 66.54%
QcC SLO 0.49 0.82 0.62 0.94 181
SL2 0.16 0.02 0.03 0.67 179
SL4 0.39 0.41 0.40 0.80 179
SL6 0.63 0.75 0.69 0.92 175

Accuracy: 49.86%

Abbreviations: QC, quaternary classification; SL, stress level; Support, number of samples used from each class during model testing; TC, ternary classification.
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Plant temperature versus Platt's probability of being classified as stressed by the six binary classification (BC) models. Individual plots

present the outcomes for BC-1 to BC-6 models (A-F). Each plot represents the probabilistic prediction for all experimental samples (n = 776). Stress
level (SL) classes employed for training the respective ML models have been specified within each plot along with the name of the model.

4 | Discussion
4.1 | Influence of Water Deficit and Plant Position
on Canopy Temperature

Decline in shoot turgor pressure due to water deficit in the root
region results in stomatal closure, causing a rise in canopy
temperature [7, 33, 34]. However, shoot water content and plant

temperature remained relatively unchanged (p < 0.05) from 0 to
6 h without irrigation in PT-1, despite significant reduction in
relative water content of the root-plugs from 95.5% to 49.8%
(Supporting Information Figure S5). This suggests that the
moisture content of root-plugs was not low enough to trigger a
temperature increase due to stomatal closure until 6 h. How-
ever, subsequent reduction in plug water content from 49.8% to
22.8% over the 6-12 h interval (Supporting Information
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Plant temperature versus Platt's probability of being classified into different levels of stress by the ternary (TC; A-C) and quaternary

(QC; D-F) classification models. Each plot represents the probabilistic prediction for the samples from all intervals (n = 776). Stress level (SL) classes

employed for training the respective ML models have been specified within each plot along with the name of the model.

Figure S5A) was accompanied by a decline in mean shoot water
content by ~12% (Supporting Information Figure S5B) and a
concomitant increase in average plant temperature by ca. 2°C
(Supporting Information Figure S5C). This steady increase in
plant temperature marks the triggering of stomatal closure,
resulting in reduced transpirational cooling [5, 7], indicating a
gradual increment in water deficit stress.

In earlier studies, a significant increase in canopy temperature
was reported for plants grown at ca. 50% field capacity compared
to well-irrigated plants [15, 35]. In contrast, the stability in
canopy temperature observed in this study from 0 to 6 h without
irrigation in PT-1 may be attributed to the stable RH and
adequate moisture in the root-plug, possibly resulting in a rela-
tively stable vapour pressure deficit (VPD) in the growth envi-
ronment, which delayed stomatal closure [36]. It is worth
mentioning here that while VPD is a convenient and reliable
measure of plant water status, we have avoided indicating the
same owing to its dependence on leaf temperature. Instead, we
have used shoot and root-plug water content as more direct
measures of plant water status in PT-1 (Supporting Information
Figure S5), followed by root-plug water content, stomatal
conductance, and plant temperature for PT-2 (Figure 4A-C).
Accordingly, co-assessment of these parameters in PT-2 revealed
that reduction in plug water content below a certain threshold,
that is, ca. Thirty-five percent, triggered rapid stomatal closure
and consequently caused a steady increase in plant temperature.

Contrary to our expectation of a gradual increment in plant
temperature with declining stomatal conductance and root-plug
water content in PT-2, we noticed that average canopy tem-
perature remained largely unchanged despite steady reduction
in root-plug water content and stomatal conductance until 7 h
without irrigation, corresponding to ca. 30%-35% and ca. 0.25-
0.3 cm/s, respectively (Figure 4A-C). However, the temperature
increased sharply from 7 h onwards, although root plug water
content was relatively stable between 7 and 10 h without irri-
gation. This shift in plant status was possibly due to widespread

stomatal closure between 6 and 7 h without irrigation and a
water deficit response to prevent excessive transpiration and
preserve moisture, which also resulted in reduced water uptake
from the root-plug. Stability in plant temperature at earlier
stages could be expected as a result of air conditioning and
forced air circulation. However, the sudden but strong onset of
drought response in terms of temperature rise occurred due to
rapid stomatal closure, because of which stomatal conductance
became too low to maintain transpirational cooling. The situa-
tion was likely intensified due to the roots being exposed to air
(Supporting Information Figure S1), unlike conventional culti-
vation systems where the roots are blanketed by soil which
would allow changes in root microenvironment at a slower
pace. Further studies with diverse plants would help us better
understand such behaviours, as roots of hydroponically-grown
plants may behave very differently from normal roots.

Nonetheless, plant temperature was found to vary considerably
across the tray at each interval (Figure 5) due to positional ef-
fects. Specifically, plants located closer to the air circulation
vents and the edges were relatively cooler, possibly due to better
air circulation and convective heat dissipation. Such observa-
tions mark the bottleneck in identifying stressed plants within
PFs solely based on absolute temperature thresholds, necessi-
tating a more in-depth analysis of thermal images by ML to
identify cohort-based probabilistic trends.

4.2 | Comparing ML Performance Parameters for
Stress Detection

In general, ML models trained using closer SLs had lower ac-
curacy than the models whose training datasets were further
apart. This was especially evident for BC-1, BC-2, TC, and QC as
also indicated by the low performance parameter values (< 0.5;
Tables 3 and 4). This observation could be attributed to simi-
larities in canopy temperature between classes with closer levels
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of stress. In addition, positional effects within the tray (Figure 5)
increased temperature variance for each SL, making the samples
from adjacent SLs even less discernible. However, as the level of
stress between the training classes became more distinct, the
performance improved steadily.

Moreover, comparison of BC-3 with the TC model, which could
be technically considered as an extension of the BC-3 model
with an extra SL6 ‘high stress’ class, indicated that having too
many classes confused the model. Specifically, despite an overall
accuracy of 66.54%, all four class-specific performance param-
eters for TC (Table 4) indicated that the model was confused
while identifying SL3 samples, which were more reliably iden-
tified by BC-3 (Table 3). Similarly, the low overall accuracy of
the QC model (< 50%) could also be attributed to too many
classes, with similarity between samples of adjacent classes
increasing model confusion further. Thus, the observations
highlight the limitations of SVM-based thermal image classifi-
cation models trained with too many classes or when samples
across the different classes displayed a high degree of similarity.

4.3 | Comparing Probabilistic Estimates of Stress
by Different ML Models

While the plots for BC-1 and BC-2 (Figure 6A,B) showed limited
probabilistic diversity for the likelihood of stress with respect to
plant temperature, the BC-3 model yielded a uniform and
continuous distribution of points throughout the entire proba-
bilistic range (Figure 6C). Furthermore, although the model was
trained with only SLO (unstressed) and SL3 (medium stress)
samples, it was even able to accurately predict a higher proba-
bility of stress (> 0.8) beyond ca. 23°C, that is, for samples
mostly belonging to SL5 and SL6 (moderate and high stress).
While the BC-4 model (Figure 6D) also showed some similar-
ities with BC-3 (Figure 6C), it exhibited an erratic trend at in-
termediate temperatures (~21.5°C-22.5°C), which became more
prominent in BC-5 and BC-6 (Figure 6E,F). This suggests that
the latter three models could confidently classify samples with
very high or very low levels of stress, whereas ‘unknown’
samples from intermediate stress levels, that is, SL2 and SL3,
might have confused them.

Results for the TC model indicated that while it could distin-
guish SLO samples reliably (Figure 7A), it failed to distinguish
between SL3 and SL6 as effectively, resulting in an irregular
distribution of probabilistic estimates (Figure 7B,C). This was in
line with the performance parameters (Table 4), and happened
likely due to the higher variability and overlap in canopy tem-
perature between later stages of stress (Figure 4D). The obser-
vations were similar for the QC model, with probabilistic
classification values for SLO and SL2 being < 0.7 and < 0.5,
respectively (Figure 7D,E), and probability distribution for SL4
and SL6 being highly inconsistent (Figure 7E,F). Thus, the re-
sults for TC and QC indicate that models could not identify
samples confidently when trained with too many classes having
high degrees of similarity.

Since the BC-3 model showed a steady probabilistic transition
over the entire temperature range and was even able to reliably

assess the likelihood of stress in samples beyond its training
range (Figure 6C), such a model could be deemed most useful
for predicting the probability of stress over a continuous scale,
especially in real-world scenarios where plant stress needs to be
assessed with precision. In contrast, models such as BC-5 and
BC-6 could be utilised for a more stringent classification as
‘stressed’ or ‘unstressed’, which would work best for detecting
high levels of stress.

4.4 | Future Perspectives for IRT in Plant
Factories

Earlier studies have explored the implementation of ML and
IRT for assessing drought stress in field conditions [10, 25] as
well as in greenhouses [12]. Our study follows the same prin-
ciple to assess the potential of IRT for identifying stressed plants
within PFs by focussing on spatiotemporal variations, compar-
ison of BC, TC, and QC models, as well as probabilistic pre-
diction of stress. Herein, processing of thermal images via SVM-
based classification models takes the spatial distribution of data
points for each sample into consideration, which adds an
additional layer of information in comparison to using only
canopy temperature values. Although many studies are imple-
menting more advanced deep learning algorithms such as
neural networks for plant image analysis and stress detection
[20, 23], we have utilised SVM for our exploratory investigation
to avoid model overfitting, considering the limited sample size.
However, tests using more diverse datasets with larger sample
sizes must be performed to explore algorithms such as con-
volutional neural networks and long short-term memory net-
works for developing more elaborate models. More in-depth
SVM hyperparameter tuning could be tried as well.

Our findings also highlight variations in the microenvironment
within PFs, and how it influences plant responses that impact
sensor readings. Since parameters such as tray size and shape,
as well as location and distribution of ventilation openings affect
plant microenvironment significantly, designing PFs keeping in
mind potential plant monitoring technologies such as IRT is
crucial for ensuring compatibility. For instance, uniform dis-
tribution of air vents and the use of mixing fans could improve
microenvironment consistency in such systems, simplifying
thermal image analysis. Moreover, trials comparing prediction
accuracies of IRT-based ML models trained with variable and
stringently-controlled environmental conditions would provide
additional insights for developing a more robust thermal image
processing pipeline for commercial-scale PFs using controlled
experimental trial data. Additionally, since research related to
improving resource-use efficiency in PFs, especially light- and
water-use efficiency, is being pursued actively, IRT-based crop
monitoring could be helpful in aiding researchers and growers
to monitor plant status more accurately while testing new
growth protocols.

In general, the technique described in this study can be effec-
tively translated for detecting any abiotic stress where plant
temperature is affected, and where visual symptoms are not
prominent at early stages, such as stress due to inadequate root
aeration, as well as biotic stresses where stomatal response is
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affected, such as root infections. Further trials would be helpful
in establishing potential applications for such conditions using
species-specific models. Additionally, co-assessment of data
from other sensors such as multispectral and 3D cameras could
be tested in tandem with IRT to further improve crop moni-
toring within PFs.

5 | Conclusion

Rapid growth in the use of PFs over the past decade has revealed
various challenges, as well as scopes for improving cultivation in
PFs. Since such systems rely extensively upon technology with
numerous mechanical components running continuously, any
undetected incident resulting in plant stress may have a
cascading effect causing extensive crop loss. Hence, early detec-
tion of plant stress plays a pivotal role in ensuring productivity in
such highly controlled and machine-dependent systems,
prompting the adoption of IRT for such operations. The present
study highlights the importance of PF system design for incor-
porating IRT-based crop monitoring via ML, with special
emphasis on positional effects within the cultivation area. In
addition, our findings indicate that while longer durations of
stress made it easier to identify stressed plants, even mild symp-
toms appearing early could be detected via IRT using ML models.
We also found that the use of BC models was adequate for
detecting stressed plants reliably, whereas using more than two
classes confused the algorithm, especially when differences be-
tween the training datasets were not very prominent. Our find-
ings also depict the pitfalls of using absolute temperature for plant
stress detection in PFs, emphasising the importance of spatial
thermal mapping and ML-based assessment in such systems.
Further investigations using other crops and diverse ML ap-
proaches with different stresses will broaden the knowledge base
for feasibly implementing this technology in commercial PFs.
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